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A.  B.  B a g d a s a r y a n  

R O C K  

An a lgor i thm is p resen ted  for  calculat ing the dynamics  of the development  of a b las t  in 
solid,  b r i t t l e  f r ac tu r ing  rocks .  The s tages  of the phenomenon a r i s ing  and a l ter~at ing in 
va r ious  sequences  depending on the mechanica l  p rope r t i e s  of the rock  and power of the 
b las t  a r e  examined in detai l .  

1. Le t  t he re  be a spher i ca l  cavi ty  of radius  r o in a space  filled with i so t ropic  b r i t t l e  rock.  The m e -  
dium is at r e s t  and c o m p r e s s e d  by hydros ta t i c  p r e s s u r e  Ph" The cavi ty  is fi l led with an explos ive  cha rge  
which, a f t e r  detonation, is conver ted  to gas  with init ial  p r e s s u r e  P0 o I t  is r equ i r ed  to de t e rmine  the c h a r a c -  
t e r  of f r a c t u r e ,  volume of f r a c t u r e d  rock,  p a r a m e t e r s  of the waves rad ia ted  by the sea t  of the blas t ,  etc. as 
a function of the p rope r t i e s  of the rock,  explosive,  and initial  hydros ta t ic  p r e s s u r e .  

The  gene ra l  approach  to the solution of such p rob l ems  is given in [1]. One of the p r o p e r t i e s  of non-  
p o r o u s  b r i t t l e  solid rocks  is that  on reaching  the s t rength  condition f r ac tu re  can be of two types :  f r a c t u r e  
with the format ion  of num erous  separa t ion  c r acks  or iented  no rma l  to the f r a c tu r e  front  and f r a c t u r e  with 
the format ion  of numerous  c leavage  c r acks  dividing the rocks  into smal l  blocks.  In porous  rocks  f r a c t u r e  
can occur  with a l l -a round  c o m p r e s s i o n  owing to f r a c t u r e  of the br i t t le  porous  skeleton.  

We will cons ider  reg ions  of rock  involved in movemen t ;  we will a s s u m e  at f i r s t  that  the m a t e r i a l  is 
unf rac tured  and then is in a f r ac tu red  s ta te  af ter  the effect  of var ious  f rac tu r ing  m e c h a n i s m s .  

Lhf rac tured  Region. I t  is  cons ide red  that  the unf rac tured  m a t e r i a l  is desc r ibed  by a l inea r  e las t ic  
model .  The solution of the fundamental  equations for  this region in the case  of cen t ra l  s y m m e t r y  is given 
by the equations [1] 

~  = - + 

V - ~ ~  ~ ~ xo ' - ~ z , - - i r - j  

= "r ~ x ,  x = r ] r o ,  �9 = c o t / r o  

(l.i) 

Here  x, T a r e  d imens ion le s s  coord ina tes ,  c o is the veloci ty  of the longitudinal e las t ic  waves ha the 
unf rac tured  region,  t is t ime ,  r is a Lagrangian  coordinate ,  p is the initial densi ty  of the medium,  ~ r '  cr0, 
~q  a r e  s t r e s s e s  on the coordinate  a r e a s ,  V is the veloci ty  of pa r t i c l e s  in a rad ia l  direct ion,  u is rad ia l  
d i sp lacement ,  ~ is Poisson~s ra t io .  

Region of F r a c t u r e  by Separat ion.  I t  is cons ide red  that  the m a t e r i a l  is divided into e las t ic  conical  
b a r s  which withstand only rad ia l  s t r e s s ,  and the hoop s t r e s s  is equal to ze ro  in the en t i re  region [1]. In 
this case  
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X ~2 7 

o0=o~=0, V= ~0~ fro'(~)+N(~)l, Cl=~ P/ 

[ t - ~  ~ eh (~=~--x~ 
u =  ro [ , ( ~ ) - ' ~ - / 2 ( ' l ) §  j ,  ph------~o~ k ~ l = ~ z + x  ] 

(1.2) 

Here c 1 is the velocity of elastic waves in mater ia l  f rac tured  by radial  c racks ,  E is Young~s modulus. 

Region of F r a c t u r e  by Cleavage. It is considered that the mater ia l  is divided by cleavage cracks  and 
descr ibed by Hooke's  law for dilitational s t rain 

(0u + ~ - ) - P h  + ( ~  + 2oo) = pco~q ~ k-~7-r 

q = ~ =  3 ~ : ~ )  ' c 2 =  3 p ( i - - 2 z )  t/ 

(1.3) 

and by the condition of plast ici ty 

o~ -- o0 = --  2~,1 (1.4) 

Here c 2 is the velocity of sound in mater ia l  f rac tured  by cleavage c racks ;  T,i cha rac t e r i ze s  friction 
on the surface  of the cleavage c racks .  The solution is given by the formulas  

q~ . .  
o~ .= - -  pco 2 - 7 -  [F1 (~1) + F~'" (ql)] - -  4~,1 in x + Ph, o0 = or 4= Zz , t  

T, 1 -~ T.1 pc02 , ~1 ----- q~ --  x, ~h -- q~ -~ x 

(1.5) 

Region of F rac tu re  by Crushing. It is considered that the crushed mater ia l  in plastic flow is de- 
scr ibed  by equations of a continuous meoium, by the equation of motion 

dV 0% 2 
P* - ~  = - ~ -  + -7- (or --  z0) (1.6) 

by the equation of continuity, which with considerat ion of the condition of incompressibi l i ty  of the medium 
adopted here  allows a general  solution of the fo rm 

V = c (t) I r 2 (1.7) 

where c( t )  is an a rb i t r a ry  function, and by the condition of plastici ty which is adopted by analogy with the 
case  of soft ground [ 2] in the form 

o, = ao, + b (1.8) 

Here p .  is the density of the crushed mater ia l .  Henceforth we will assume for simplification of the 
mathematical  procedure* that upon crushing the mater ia l  acquires  maximum density, determined by the 
formula  

p, ---- kp, k = const (1.9) 

in Eqs~ (1.8) and (1.9) a and b are pa rame te r s  dependent on the medium and on the hydrostat ic  p r e s -  
sure  (Ph), and k is the coefficient of maximum compaction [3]. 

*We note that considerat ion of the variabil i ty of compaction of the mater ia l  at the front of the shock wave 
does not cause fundamental difficulties, but the equations and formulas  of the final mathematical  problem 
become cumbersome  [2]. 
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Changing to dimensionless  var iab les  x, ~- in Eqs. (1.6) and (1.7) and using (1.8) and (1.9), we obtain 
the express ions  for s t r e s s e s  and mass  veloci t ies  

z~=pCo ~ ~ ~ + t + .  7 -  +c~(*)x~( ~-~)+ 

+ z ~ = a z  r-~-b, V = c o  , B ~  pco~ 
(1.1 O) 

where cl(~') is a new a rb i t r a ry  function. 

The unknown functions figuring in expressions (1.1), (1.2), (1.5), and (1.10) should be found f rom bound- 
ary conditions which will be formulated for each of the stages of sequential development of the phenomenon, 
separa te ly  for porous and nonporous solid rocks .  

2. We will consider  the case  where the strength and p r e s s u r e  in the cavity are  sufficiently grea t  and 
the rock is nonporous,  i.e., where f rac ture  occurs  by the formation of cleavage and separat ion c racks .  

This problem for the case where f r ac tu re  occurs  only by separat ion is solved in [4]. 

The initial data for  which f rac tu re  occu r s  by cleavage can be determined f r o m  the solution of the 
problem for a l inearly elast ic model with considerat ion of the condition of f r ac tu re  [1] 

~ -- ~ =: - -  2 T ,  ( 2 . 1 )  

attained in the cavity at instant T = ~i' These data should satisfy the condition [4] 

Po ~ 2~, -- % (2~ 

where T, is the critical value of tangential stresses, G, is the critical value of tensile stresses. 

The propagation of the blast waves on fulfilling condition (2.2) occurs in the following stages in the 
general case. 

1o An elast ic  wave is radiated f rom the sur face  of the cavity during t ime 0 _< T _< 7 I. 

2o The spi~erical front  of cleavage f rac tu re  x = x2(T) radiating elast ic  waves begins to penetrate  into 
the medium f rom the sur face  of the cav ib  , at instant f = T~: f rac tu re  continues until instant ~- = 7 2, when 
the condition of f rac tu re  by separat ion 

~0 = ~, (2.3) 

is attained on the f rac tu re  surface  X = x~(:r) on the side of the unfractured region.  

3. The f rac tu re  front bifurcates  at instant T = ~'2. An elast ic  wave propagates  along the ~_mfractured 
medium, behind it is the front  of f r ac tu re  by radial  c racks  (x = xl(~-)), and behind that is the crushing front 
(x = x2(~)) .  

4. At instants n- = ~'3 and ~- = ~'4 the velocity of fronts  x = x2(z) and x = xl(~) vanish and f rac tu re  stops.  
The radiation of e last ic  waves continues until equil ibrium is established around the cavity.  The equations 
of the final mathemat ica l  problems occur r ing  for the indicated s tages of f r ac tu re  are  given below. 

The solution of the problem at the f i rs t  stage is descr ibed by formula  (1.1), and function f(~) is de- 
te rmined by the formula  

i (~) = i-~ { [2z-i I 2(t--2z) (Po--Ph) I - - ] /2( I  - -z)  exp L ~ ( ~ -  ~ ~) sin 

• vl-2~ i I} P~ i - - ~  (~ ~- l)  + arcsin Po ----- 
2 V ~  ' P c0~ 

(2.4) 

Instant 71 is determined from condition (2.1) if we substitute into it the values of G r and G 0 in the 
cavity, using (i.I) and (2.4). The second stage is described by Eqs. (i.i) and (1.5), a~d the unknown func- 

tions f(~), FI(}I) , F2(?/I) are determined from the boundary conditions, which consist of the condition on the 
cavity and the condition of conjugation at the fracture front, the law of motion of which,x = x2(~-) , is also to 
be determined. 

The condition on the cavity is obtained f rom the assumption of an adiabatic quas i s teady-s ta te  change 
of the p r e s s u r e  of the blast products upon a change of volume of the cavity [1]. 
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The conditions of conjugation at the front x = x2(~) consist  of the f r ac tu re  condition (2.1), which is : 
fulfilled on the outer  side of the front ,  and of the re la t ionships  on the su r face  of a s trong discontinuity. 

Taking all this into account, we obtain the equations descr ibing the propagation of blast  waves and 
f r ac tu re  of the rock  in the second stage in the fo rm 

V (~) 3 ~ f (~) ~ (~) ~ 9. (i-- ~) T 

F~'(~)-- F~" (~) § ~1(~) + F~(~) 4(i--~) ~:~('0 + - i - ~  T*~x~('e)lnx~(~) 

] (~) 
= l" (~) -~ ~(~) 

2 ( t - 2 : )  l ]'(~) + l(~) 7 
/"(~)-~ -f-~-~ L x~(~) ~ . 1  - q ~ [ F ~ ' ' ( ~ ) +  F:''(~I)] (2.5) 

~" (~) + F~" (n) 
- -  4T,tx~(~:)Inxs('~) = x~'(~) {1"(~) -? x~(~) z~(~) 

q: [Fi" (t 0) + F~'" (~0)1 + p~ = p0 [t + Ft" (~o) _ Fd (~~ + F~ (~~ F~ (~~ T,  = ~* 
pco ~ 

~ ~  ~l~ + l ,  T ,  = ~ , l p c o  ~ 

Here  we ought to supply the quantit ies ~, ~, ~ with indices in o rde r  to distinguish them in Eqs. (1.1), 
(1.2), and (1.5), but for  convenience we will not use indices.  

The adiabatic exponent of the blast  products  y is taken to be equal to 3 for  high p r e s s u r e s  and to 1.25 
for modera te  and low p r e s s u r e s .  

The posi t iveness  of a cer ta in  express ion  A, which in the case  in question amounts to the inequality 

A =  2q~,, {- FI"" (~) + .  ~ F~'"(').4-3[ F,",~)-- F~'" ( ~ ) ~  ~ F," (5) +x~ F(( , )1} > 0  (2.6) 

iS the condition establishing that shea r  is everywhere  plastic behind the front .  

In set t ing up the solution we must  watch the sign of A, and f rom the point where for the f i r s t  t ime 
A = 0 we must  cons t ruc t  the ra re fac t ion  wave behind which shear  will be elast ic .  

We will consider  the case  where condition (2.6) is fulfilled. F r o m  the solution for the f i r s t  stage we 
can obtain the condition for  the initial data 

P o ~ P ~ +  2 (t--~) i - - 2 z  'r, (2 .7 )  

on fulf i l lment of which the second stage occurs  immediate ly  at the initial instant (f irst  stage is absent) and 
if not fulfilled the f i r s t  s tage occurs .  

System of different ia l  equations (2.5) is in tegrated to instant ~- = T 2 during which the condition of 
f r ac tu re  by separat ion (2.3) is attained at the f ront  x = x2(~-) on the side of the unfrac tured  mater ia l .  

The th i rd  stage is descr ibed  by Eqs. (1.1), (1.2), and (1.5), where the unknown functions f(~),  ft(~),  
f2(~), F~(~l), F2(~ i) a re  de termined  f rom the boundary conditions, which a re  fo rmed  on the cavity and at the 
f r a c tu r e  f ronts ,  the laws of motion x = xi(~-) and x = X2(T) also being subject  to determinat ion.  

With considerat ion of (1.1), (1.2), and (1.5) and the indicated boundary conditions, we obtain the fol- 
lowing sys tem of functional di f ferent ia l  equations for  de te rmin ingthe  unknown functions of the th i rd  stage: 

q: IF1" (~~ -l- F(" 0lo)] + ph--= Pe [i -+ FI" (~~ -- F (  01 ~ + Ft (~~ + F2 01~ -~  

11" (~t) - -  1~" (~1~) ., /1 (~1)~+(~)1~ (nl) = -'~2T* x~ ('~) 

4 (i -- ~) 
F~" (~2) - -  F( (~h )  + ~ (~) 

2T,x~  ('~) - -  q~ [FI" (~2) A- F (  (~h)] + 4 T , t x s  (~) In x~ (~) 
- -  phxs (~) = xs" (T) {X []t" (~) +. t~ QIt)] -- q [F~'" (~) -- F2" (~h) -~ F~" (~:)x:(~) + Fd (,2) Jl 
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~ - -  

L 
= z ~ "  t [t~" f+" (n)] - -  [" (C) - .~ 

(2.8) 

where 

~ 1 = ~ - - z ~ ( ~ ) ,  ~=q~--z~(~), +1 ~ 2 4 7  
'l = kv + z~ (~), ~h = ~'~ § x++ (~), 'h  = r § x~ (~) 

The fourth stage arises if on integrating systems (2.5) and 
(2.8) the velocity of one of the fronts  vanishes at some instant (7 = 
r After this instant the f rac tu re  condition on the cor responding  

Fig. 1 front [first  equation of sy s t em (2.5) o r  second and fifth equations 
of sys t em (2.8)] must  be replaced by an equation corresponding 
to the condition of stopping of the front 

x~ (~) = const or x~ (x) -- const (2.9) 

Upon exhaustion of the front x = x2(7) its backward motion is impossible,  i.e.,  x~ .(r) _> 0, and upon 
exhaustion of front  x = xl(7) the condition x~ (%)= 0 must  be p re se rved  up to 7 = ~ ,  if cr 0 at the front x = 
xt(7) on the side of the unfractured region s tays  within 0 < c~ 0 < cr,. 

If at instant ~- = 74 s t r e s s  ~0 vanishes,  the front x = x1(7) will begin to move into the region of f r a c -  
ture  by radial  c racks ,  closing the c racks .  F r o m  instant ~4 the solution is descr ibed by sys tem (2.8), if 
in it the r ight-hand side of the seventh equation is equated to zero and we set  E ,  = 0. 

If the front x = xl(7) , pe r forming  osci l lat ions,  extends to the t rue  boundary between the f rac tured  and 
unfractured regions,  the solution must  be continued with considerat ion of f r ac tu re  (third stage). In the case  
where A in Eq. (2.6) vanishes at point (x, r), the solution must  be continued with considerat ions of elast ic  
unloading. The equations for this case a re  easily obtained f rom considerat ions  presented in [1]. As spe-  
cific calculat ions showed, in all the calculated var iants  of this problem condition (2.6) is satisfied, and 
there fore  the equations descr ibing elast ic unloading will not be presented here .  

Let us proceed  to a descript ion of the numer ica l  method of solving the problem descr ibed  above. As 
was already noted, if condition (2.7) is not satisfied,  the solution must  be set up by Eqs. (1.1) and (2.4); and 
if condition (2.7) is satisfied, it must  be set up by means of Eqs. (2.5) f rom the initial instant. In the in ter -  
val T I -< T ~ T z the solution of system (2.5) is constructed in the same manner as described in [i, 4], i.e., 
the asymptotic solution of system (2.5) near the point (~- = ~-I, x = i) is constructed, system (2.5) is divided 
into two parts (the first three equations are the first part and the fourth equation is the second part), the 

Cauchy problem is set up for each of these parts, and then the equations are integrated sequentially. In the 
first part FI(~) is the known function from the preceding solution (or from the asymptotic solution) and in 
the second it is the function F2(~). 

The solution of system (2.5) is calculated up to instant 7 = ~2, after which it is necessary to construct 
the solution of system (2~176 On changing at instant 7 = ~-2 to the construction of the solution of system (2.8) 
it is necessary to have the asymptotic solution of system (2.8)near the point 7 = ~-2, x =x 2 0-~. We will explain 
the procedure of continuing the solution by means of a graphic diagram (Fig. i). In accordance with the 
scheme described in [I~ 4], let the solution be constructed in the region 0 _< T -< T2, and by asymptotic for- 
mulas be constructed in the small region abcde, where bc and bd are the initial segments of the curves x = 
x~(T) and x2(7), and ae is a sufficiently small interval. From point d we draw the characteristic ~ = X~ - x = 
XT d- x2(~d). It intersects curve x = XI(T) at some point f. From this point we draw the characteristic ~ = 
T -- x = Tf - x1(7f). Since the solution is known in region abcde, fl(~) will be known in the interval [~c, ~f]" 

In the fifth, sixth, and seventh equations of system (2.8), assuming f1(~) is known, we obtain a~ indi- 
vidual system for determining the three functions f(~), f2(~), and x2(7). Regarding the latter as functions 
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of ~ := ~ - xl(7) and changing in t he se  equat ions f r o m  di f ferent ia t ion  with r e s p e c t  to ~, ~, 7 to d i f fe ren t ia t ion  
with r e s p e c t  to the v a r i a b l e  ~, we r e d u c e  the fifth, sixth,  and seventh  equa t ions  of s y s t e m  (2.8) to an indi-  
v idual  s y s t e m  of o r d i n a r y  d i f fe ren t ia l  equat ions  fo r  which the Cauchy p r o b l e m  was se t  up. 

The  ini t ial  da ta  a r e  d e t e r m i n e d  f r o m  the  a sympto t i c  solut ion at point  c.  Solving this  p r o b l e m  n u m e r  ~ 
ica l ly ,  we find the s e g m e n t  of  the  c u r v e  of the  l ine x = X~(T), funct ion f (~ )  in the in t e rva l  [~c, ~f], and f2(~) 
in th is  c a s e  wi l l  be known in the in t e rva l  [qc, ~f]  �9 We d r a w  th rough  point  e the c h a r a c t e r i s t i c ' ~  1 = W - x = 
q T e - 1 ;  it i n t e r s e c t s  l ine x = x 2 (T) at point  g. We then d r a w  the c h a r a c t e r i s t i c  q = XT - x  = XTg--X 1 (Tg) f r o m  
point  g; it i n t e r s e c t s  l ine x = x~ (~) at point  h .  On s egmen t  dg of l ine x = x 2 (T) the functionf2(w ) is known 
f r o m  the so lu t ion  of the f i r s t  s y s t e m ;  funct ion F 1 (~2) wi l l  a l so  be known t h e r e ,  s ince  it is  known on segmen t  
ie [ f rom the a s y m p t o t i c  so lu t ion  and f r o m  the so lu t ion  of  s y s t e m  (2.5)]. 

F r o m  the  second ,  th i rd ,  and four th  equat ions  of  s y s t e m  (2.8) we obtain the s econd  s y s t e m  of  equat ions  
f o r  de t e rmin ing  F2(~2), fl(~l),  and x2(~). Regard ing  t h e m  as funct ions of  T and changing  f r o m  di f ferent ia t ion  
with r e s p e c t  to ~l, ~2, Hi, ~2 to d i f fe ren t ia t ion  with r e s p e c t  to T, we r e d u c e  t he se  equat ions  to Cauchy ' s  
p r o b l e m  fo r  s y s t e m s  o f o r d i n a r y  d i f fe ren t ia l  equa t ions  with init ial  da ta  at point  d. Solving th is  (second) s y s -  
t e m  n u m e r i c a l l y ,  we f ind s e g m e n t  dg of  l ine x = x2(~) and funct ions  FI(~ l) and F2072) r e s p e c t i v e l y  in i n t e r -  

va ls  [~ld, ~lg] and [~/ld, ~lg] o 

We now d r a w  f r o m  point g the c h a r a c t e r i s t i c  ~1 -- q~ + x = qTg + x2(rg); i t  i n t e r s e c t s  l ine x = 1 at 
point  j.  In the in te rva l  [~la,~?1~] (on s e g m e n t  a j ) f u n c t i o n  F 2 is known f r o m i h e  init ial  a sympto t e  and f r o m  
the solut ion o f  the  s econd  s y s f e m .  With cons ide ra t ion  of  th is  the f i r s t  equat ion of  s y s t e m  (2.8) on changing  
to the  v a r i a b l e  ~~ q~ + 1 is r e d u c e d  to an o r d i n a r y  d i f fe ren t ia l  equat ion fo r  d e t e r m i n g  Fl(}2), fo r  which 
the Cauchy p r o b l e m  with ini t ia l  da ta  at  point  e was a l so  s e t  up. 

Solving this  p r o b l e m ,  we d e t e r m i n e  funct ion F 1 in the in t e rva l  [}la, ~ij]- Now we d raw f r o m  p o i n t f  
the  c h a r a c t e r i s t i c  7? = ?~T + X = k T f  + X2(~f); it i n t e r s e c t s  l ine x = x2(~) at point  k. F r o m  point  k we d raw 
the c h a r a c t e r i s t i c  }, = q~ - x qT k -  x2(~k); it i n t e r s e c t s  l ine x = 1 at point  l. The  second  s y s t e m  is again 
so lved  fo r  i n t e rva l  gk,  with f20?l) be ing known in the in t e rva l  [~g, rfk] and Fl(~ 2) in in t e rva l  [~g, ~k] f r o m  the 
p r eced ing  so lu t ions ,  and C a u c h y ' s  da ta  a r e  taken fo r  point  g. The  f i r s t  c y c l e  ends on th is .  The  solut ion 
is cont inued f u r t h e r  in an analogous  o r d e r ,  i .e . ,  d rawing  th rough  point  k the  c h a r a c t e r i s t i c  ~ = cons t ,  which 
i n t e r s e c t s  l ine x = xl(~) at point m,  we d e t e r m i n e  the  reg ion  where  the f i r s t  s y s t e m  m u s t  be in tegra ted .  
Then the second  s y s t e m  is  i n t eg ra t ed  on s e gmen t  kn of c u r v e  x = x2(r), a f t e r  which the equat ion for  Fl(~2), 
etc.  The  cons t ruc t i on  of  the solut ion for  la te  ins t an t s  is done a c c o r d i n g  to the  given s cheme ,  only in Eqs.  
(2.8) it is n e c e s s a r y  to t ake  into account  those  changes  which a r e  d e s c r i b e d  fo r  the  four th  s tage .  

We will p r o c e e d  to the  c o n s t r u c t i o n  of  the  a s y m p t o t i c  so lu t ions  n e a r  ins tan t s  ~l and 72. In solving 
th is  p r o b l e m  it is  n e c e s s a r y  to have the a sympto t i c  solut ion of s y s t e m  (2.5) n e a r  point  T = 0, X = 1 if cond i -  
t ion (2.7) is fulf i l led and n e a r  point  �9 = ~l, x = 1 if  condi t ion (2.7) is not  fulf i l led.  It is n e c e s s a r y  to have 
a l so  the a sympto t i c  solut ion of  s y s t e m  (2.8) n e a r  point  �9 = ~2, x = x2(~2). 

In the  c a s e  where  condi t ion  (2~ is fulf i l led,  the solut ion of  s y s t e m  (2.5) n e a r  point  ~ = 0, x = 1 is 
expanded in a T a y l o r  s e r i e s ,  i .e . ,  cons t ruc t i on  of  the a sympto t i c  solut ion amoun t s  to de t e rmina t ion  of  the  
va lues  of  the unknow~ funct ions  and the i r  d e r i v a t i v e s  at point  (0, 1 ). F r o m  the  ini t ial  condit ion in this  c a s e  

u(x, 0) = 0 we have 

2(t--~) 7 ,  (2.10) 1 o = / o ' = 0 ,  / ~  I-2~ 

i .e . ,  at  the  ini t ia l  ins tan t  the s t r e s s e s  and m a s s  ve loc i t i e s  in the  u n f r a c t u r e d  r eg ion  depend only on the 
p a r a m e t e r s  of the  m e d i um .  H e r e  and hence fo r th  the indices  0 a r e  the va lues  of  the funct ions  and the i r  
de r iva t i ve s  at points  c o r r e s p o n d i n g  to the s t a r t  of  f r a c t u r e  (points (0, 1), (~l, 1), (T2, X2(T2))). 

F r o m  s y s t e m  (2.5) we obtain fo r  the ini t ial  ve loc i ty  of  the f ron t  

- -  2~) (1 ~- ~) 2 ( t  - -  ~5) T .  - -  p o  ~ P h  7 ~s 
x~,( =- r (l 1 -- ~ 2 (l + o) T, + (i -- 2~) (4r,1 - 3po - 3p~) j (2.11) 

L 

Hence  fol lows in p a r t i c u l a r  tha t  x20" ~ q as P0 - Ph ~ ~ ,  i .e . ,  the propaga t ion  ve loc i ty  of the f r a c -  
t u r e  f ron t  is l imi ted ,  which a lso  fo l lows f r o m  the  condit ion of t h e r m o d y n a m i c  c o r r e c t n e s s  of the  p r o b l e m  

obta ined  in [1].  
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F o r  c o n s t r u c t i n g  the  a s y m p t o t i c  so lu t ion  we do not  need  all  va lue s  of  the  func t ions  and t h e i r  d e r i v a :  
r i ves  but  only the  fol lowing c o m b i n a t i o n s  f igur ing  in Eqso (1.5): 

F~ ' - -  F~" + F~ + F,,  F~'" + F ( ,  F~'" - -  F~'" + F~" + F~" (2.12) 

By v i r t u e  of  the  ex i s t ing  a r b i t r a r y  ru l e  we a s s u m e  

F~o= F,o = F~o" = Fz~ = 0 

F r o m  s y s t e m  (2.5) we ea s i l y  find f o r  point  �9 = 0, x = 1 

(2.13) 

F'~o ~ p o - -  Ph 
2q~ - ( - i p a ~  

Fno"" = - - 1 . 5  7 q ~ p o a ~ - - ( - - i )  '~ z~o"as-  a 2 (n = t, 2) 
q2 __ x2o'2 

2 ( t - - ~ )  4 z ~ o ' - - 3  T 
/ o " ' =  t - - 2 z  t--z~o' * 

X ~ ' "  ----- [2  ( t  - -  z )  T ,  - -  q ( t  - -  2~)  a~] (q~ - -  x~o "~) - -  2qaa ( i  - -  2z )  x~o" 

(2.14) 

H e r e  

t j 2 ( t - z )  _[2(1_--2z) ~-T-'5 ( P o - - P a ) +  i - z z  

az = 7alx~a - -  (q - -  x~o) ~ F t o ' " +  (q ~- x~o') ~ F,.o'" + i + z T , x : d :  - -  (i - -  x:~'): (/o"" - -  H ' )  

l 2 ( t - -  ~) 4 ( t - - : )  ( 2 . 1 5 )  

a~ = (J - -  x2o') (/o'" + T , )  -+- 3ypoqa 1 5- 4l ' ,~x~o - -  q - -  x~o" { ( t  - -  X~o') (f~"" 

+ io)  - - q f ( q -  x o) Flo" + (q + X o') e.o"l } 

T h e r e  is  no need  to d e t e r m i n e  h ighe r  o r d e r  d e r i v a t i v e s ,  s i n c e  the  p r o b l e m  m u s t  be  so lved  n u m e r i c a l -  
ly,  and the r e q u i r e d  a c c u r a c y  can be a t ta ined  by s e l e c t i n g  a su f f i c i en t ly  s m a l l  in i t ia l  s e g m e n t .  

In the c a s e  whe re  condi t ion (2.7) is  not  fu l f i l led ,  the a s y m p t o t i c  so lu t ion  of s y s t e m  (2.5) n e a r  point  
(71, 1) con t a in s  a s i n g u l a r i t y  and is  c o n s t r u c t e d  as  in [4]. F r o m  the so lu t ion  of  the  f i r s t  s t a g e  f 0  a n d f o "  
a r e  k n o ~ a .  

With c o n s i d e r a t i o n  of th is  and the  a r b i t r a r y  r u l e  (2.12), f r o m  s y s t e m  (205) we can ea s i l y  d e t e r m i n e  
f 0 " , f 0 " ' ,  F10, F~0", F20, F20" fo r  point  (~I, 1), and relat ionx20" = 0 fol lows f r o m  the cont inui ty  of  crr on c h a r -  
a c t e r i s t i c  ~ = T 1 -  1 and f r o m  the condi t ion of cont inui ty  of  i m p u l s e ,  s ince  [du /d r ]  ~ 0. 

Functionsx2"" (T),  F i ' "  (}) ,  F2"'(g),  a n d f  (IV)(~) have  s i n g u l a r i t i e s  of  o r d e r  

x"2 .-" ('~ - -  "n) - 'f ' ,  FI"" - -  (~ - -  ~o) - '} ' ,  F~'" - -  (n - -  ~o)- '1,, /(Iv) - -  (~ _ ~o)-~/, ( 2 . 1 6  ) 

With c o n s i d e r a t i o n  of the a f o r e s a i d ,  we obtain  the a s y m p t o t i c  so lu t ion  of s y s t e m  (2.5) n e a r  point  �9 = "Q, 
x = 1 in the f o r m  

F1"(~1) = b~ -1- b~q (x - -  "q) - -  bob ~ ('~ - -  "q)'/" + 0.5b~q ('v - -  "cl)~ -}- q (0.53q~b~ 

- -  boba) (v  - -  Vl) ~ - -  0 . S b  o (2.83q~b~ - -  b o b~) (~r - -  "ci)~ -}- . . .  

~ (oh) -~ beq (z - -  ~ )  ~- b o [b: - -  0.4qb5 (q - -  bo) ] ('r - -  ~ ) V :  [0.5q~ __ 0.45boba(q (2.17) 
- -  bo)] (z  - -  "q)u .-- q [0.53qSb4 - -  bob~ - -  0.33qb.~ (q - -  bo) ] (z - -  ~x)th 

- -  [t .42bob~q ~ - -  0.5bo~b~ - -  0 A 6 b  s (q - -  bo)] ('c - -  -r + . . .  

(~) = Yo + fo" (~ -- ~,) -- bdo (~ - -  ~)'/" + 0.5fo'" (z -- ~)~ + bo (0.4 § 0.6/o") 
(v  - -  ~q)'Z, _{_ (0.161o.. .  + 0 .5bo  u) (~ __ . q ) ~ ,  . . .  

bo = [ 8 (baqS - -  / o " )  ( t - -  ~) - -  4qb" ( 1 -  2r ]% 
(2b~ - -  )to'") ( t  ~-  ~) - -  4 ~ , ,  (1 - -  ~) 

1 1 
bl -~  [o + ]o ' ,  b~ = ~ "  ([o" + / o " ) ,  ba = ~ [(po "~  bl)  - r t  - -  Phi 
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3 (t  - -  z )  2 t T = - -  
b , = O . 7 5 b 3 - - - - - - ~ - ( V - 4 - = ~ ' * , +  ~ , ) ,  '1o-" 3(/o'+fo") 

b5 = ~ '  bopo (4_ .{.- b~), fo'" - -  2 ( t  - -  ~) - -  2~ " T ,  - -  3b~ 
(2 A8) 

The  s o l u t i o n  of  s y s t e m  (2.8) n e a r  po in t  7 = 72, x = x 2 (72) i s  e x p a n d e d  in a T a y l o r  s e r i e s ,  i . e . ,  the  p r o b -  
l e m  a m o u n t s  to  d e t e r m i n i n g  the  v a l u e s  of the  unknown func t ions  and t h e i r  d e r i v a t i v e s  at  t h i s  poifi t .  On the 

o h a r a e t e r i s t i e s  ~ = 7 - x  = 7 2 - x  2 (72) and ~ 2 = qv - x  = q~ '2-x2 (72)the d i s p l a c e m e n t  and s t r e s s e s  a r e  con t inu-  
ous ,  i . e . ,  fo ,  f o ' ,  f o " ,  F~o, F~o', F~o",  F20, F20", F20",  X~o = x20 a r e  known f r o m  the  p r e c e d i n g  so lu t ion .  

F r o m  s y s t e m  (2.8) we e a s i l y  d e t e r m i n e  the  q u a n t i t i e s  

f~o = fo" + /~ t - -  z z,o t + z PhX~~ f~o = 0 

t __  V - d - ~ - ]  __ ( _ _ l )  n ( . . ~ _  T ,  - -  ~ - ~ /  (n = t ,  2) /no = -~- [do ~ o  i , o ~  

X~o" = \-~f/ , X,o" = (/~o" +/~o" - /o '" )  =2o-/o" 

(2.19) 

w h e r e  

do = ---q [(Fro'" - -  F2o") X2o ~ Fro" + F~o'] 
X$o 

dl = F1o'" + F~o'" -4- ~2o (Flo" - -  F~o') i - -  ~ ( F l o  + F~o)  + 

_ 2x~o T ,  /~o 2 ( t  - ~) �9 ~_ 4 (1-- z) T,lx~o (t + 2 In x~o) - -  ~ t + ~ PhX~,. 

d~ = q~ ( F l o"~ + F 3o") + 2x2o T , - -  4x2o T .1 In X2o + pox2o 

/') 
�9 

(2.20) 

The  e x p r e s s i o n s  of h i g h e r  o r d e r  d e r i v a t i v e s  can  be d e t e r m i n e d  e a s i l y  by d i f f e r e n t i a t i n g  Eqs .  (2.8) 

and a r r a n g i n g  T to 72. 

On the  n S t r e l a - 4 ~  c o m p u t e r  the  a l g o r i t h m  d e s c r i b e d  above  was u s e d t o c a l c u l a t e  t he  p r o b l e m  of  the  
e f fec t  of  a b l a s t  in v a r i o u s  m e d i a  with i n i t i a l  p r e s s u r e s  in the  c a v i t y  P0 = 2.  103-105 a t m  up to t he  i n s t a n t  
of f o r m a t i o n  of  a r e g i o n  of  r a d i a l  c r a c k s .  Some  a u x i l i a r y  c a l c u l a t i o n s  w e r e  m a d e  on the  ~Na i r i  n c o m p u t e r .  

/6 

B 

J 

0 

" N  
\ \  

Fig .  2 

f 

/0 

T h e  r e s u l t s  of t he  c a l c u l a t i o n s  fo r  the  c a s e  w h e r e  cond i t ion  (2.7) 
is  f u l f i l l ed  a r e  shown in p l ane  XT in F i g .  2. T h e  l aw  of e x p a n s i o n  of  t he  
c a v i t y  x = x3(7), l aw  of mot ion  of  the  f r a c t u r e  f r o n t  x = x2(~-), and change  
of  v e l o c i t y  of the  f r o n t  X2"(T) with t i m e  in the  i n t e r v a l  0 _< 7 -< T 2 a r e  
shown.  

T h e  r e s u l t s  p e r t a i n  to c l a y  s h a l e ,  s o l i d  l i n e s  (cr = 0.26, E = 1 .9"  
105 k g / c m  2, a ,  = 38 k g / c m  z, 7 ,  = 250 k g / c m  ~, 7 , t  = 100 k g / c m 2 ) ,  to  
l i m e s t o n e ,  d o t - d a s h  l i n e s  (or = 0.25, E = 7" 105 k g / c m  2, ~ ,  = 25.5 k g / c m  2, 
7 ,  = 400 k g / c m  2, 7,1 = 150 k g / c m 2 ) ;  to g r a n i t e ,  d a s h e d  l ine  ( a  = 0.3, 
E = 2 .22 .  l 0  s k g / e m  2, ~ .  -- 45 k g / c m  2, 7 ,  = 750 k g / c m  2, 7.1 = 400 k g / c m  2) 

[3] fo r  a b l a s t  with p a r a m e t e r s  P0 = 10a a tm ,  Ph = 10 a tm.  

F i g u r e  3 shows  s i m i l a r  d a t a  fo r  the  c a s e  w h e r e  condi t ion  (2.7) i s  
not  f u l f i l l ed  fo r  a b l a s t  in g r a n i t e  with p a r a m e t e r s  P0 = 2000 a tm,  Ph = 
300 a t m  (dashed  l i n e s )  and t) 0 = 2500 a tm ,  Ph = 300 a t m  ( so l id  l i n e s ) .  As 
in F ig .  2, the  c a l c u l a t i o n  was p e r f o r m e d  only  f o r  the  i n t e r v a l  0 -< 7 -< 
T 2 e x c e p t  t ha t  h e r e  71 > 0. T h e  g r a p h  of the  e x p a n s i o n  of the  c a v i t y  i s  
not  shown in F i g .  3, s i n c e  th i s  expans ion  i s  n e g l i g i b l y  s m a l l  in t he  given 

c a s e .  
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Here, as in the case  of the formation of only a region of f r ac tu re  c racks  [4], the relat ions x 2 �9 (~l) = 
0,x2"'(T t) = ~ hold t rue,  i.e., the f rac tu re  front begins to move f rom the surface  of the cavity with a zero  
velocity and in a short  t ime picks up maximum velocity (in this case,  of course ,  the limitation on the ve loc-  
ity of the f r ac tu re  front obtained f rom the requi rements  of thermodynamic  co r r ec tnes s  of the problem for -  
mulated and uniqueness of its solution [1] is realized),  after  which x2-. < 0 - the velocity of the front  de- 
c r ea ses  slowly. 

As we see f rom Fig. 2 and f rom the resu l t s  of the calculations of many other var iants ,  with sufficient-  
ly high initial p r e s su re s  the velocity of the f rac tu re  front at f i rs t  dec reases  very  slowly in compar ison with 
late instants.  After the velocity of the front begins to dec rease  intensely, condition (2.3) is attained at the 
f rac tu re  front before the front velocity vanishes.  

F igures  4 and 5 show the laws of change of s t r e s s e s  and mass  velocit ies in t ime at dis tances x = 100 
for a blast  with pa r ame te r s  P0 = 104 atm, Ph = 10 arm in granite,  and also the corresponding data for the 
solution of the problem in a purely elast ic setup. 

We see that the solution const ructed  differs considerably f rom the solution of the problem in a pure-  
ly elast ic setup, both with respec t  to the fo rm of the elastic wave and to its amplitude and duration, i.e., 
despite the fact that the region of f rac ture  by cleavage (r ~ 5r 0) is small  in compar ison with the distance 
considered (r = 100 r 0), the effect of p rocesses  in the f rac tured  region on the cha rac t e r  of the elastic waves 
radiated is substantial.  True,  in the case  in question the effects of a decrease  of amplitude and increase  of 
duration of the elastic wave in compar ison with the case  of the purely elastic solution are  not as great  as in 
the cases  considered in Section 3 of this paper and in [5]. 

Figure 6 shows the graphs of the change of mass  veloci t ies  in t ime at var ious  dis tances f rom the 
blast  center  in grani te  for pa r ame te r s  P0 = 104 atm, Ph = 10 atm~ 

Figure  7 shows the profi les of the radial  and hoop (dot-dash lines) s t r e s ses  in the near  zone for  a 
blast  with p a r a m e t e r s  P0 = 104 atm, Ph = 10 atm in grani te  for different instants noted in the figure~ 

The f i r s t  jump of s t r e s s e s  cor responds  to the  ar r iva l  of the leading edge of the radiated elastic wave 
and the second to the passage of the f rac tu re  front.  

I 

~F 

Fig. 6 
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We note  that  it follows f r o m  an analysis  of the r e su l t s  of calcula t ions  for  di f ferent  va r i an t s  in which 
T,  and r were  va r i ed  that,  o ther  conditions being equal, the d imensions  of the region of f r ac tu red  rock in- 
c r e a s e  with d e c r e a s e  of the d i f ference  between ~ ,  and ~ , l .  If  ~',I -~ ~',, the veloci ty  of the f r a c tu r e  f ront  
tends to a constant  value equal to c z. This  ca se  with considera t ion of the condition cr, = 0 co r r e sponds  to 
jointed rocks .  Some exact  solutions for  this specia l  case  were  obtained in [6]. 

3. We will cons ide r  the p rob l em  of the effect  of a b las t  in porous  b r i t t l e  rocks .  The  porous  m a t e r i a l  
is f r ac tu red  when the s t r e s s e s  exceed the c r i t i ca l  values  of the tens i le  (~,), c o m p r e s s i v e  (cr**), and shea r  
(r  = 0.5or**) s t r e s s e s  and hydros ta t ic  s t r e s s  (or,0). 

The  f r a c t u r e  conditions for  porous rocks  can be writ ten in the  f o r m  

~e = % ,  ~r + ~ e  = - - ~ * *  ( 3 . 1 )  

For  a = 0 we have f r a c t u r e  when the radia l  s t r e s s  r eaches  the c r i t i ca l  c o m p r e s s i v e  s t r e s s .  The  con- 
dition a = - 1  co r r e sponds  to the c a s e  of f r a c t u r e  when the tangential  s t r e s s e s  reach  the c r i t i ca l  value.  Fo r  
c~ =- 2 the m a t e r i a l  f r a c t u r e s  when the s t r e s s e s  r e a c h  the c r i t i ca l  value of hydros ta t ic  s t r e s s .  

If  the initial  p r e s s u r e  in the cavi ty  is high, a supersonic  spher ica l  c rushing shock f ront  will pass  
through the rock  at the ini t ial  instant .  The veloci ty  of the crushing f ront  will d e c r e a s e  with t ime ,  and at 
the instant  when the v e l o c i t y b e e o m e s e q u a l  to the veloci ty  of sound in the unfrac tured  ma te r i a l ,  the front  
will begin to rad ia te  an e las t ic  wave into the unf rac tured  m a t e r i a l .  If t ens i le  s t r e s s e s  reaching  the c r i t i ca l  
value ~ .  occur  in the med ium not f r a c t u r e d  by crushing,  a front  of f r a c t u r e  by separa t ion  c r a c k s  will pass  
through the medium.  

At this instant  the f r a c t u r e  front  b i fu rca te s  - the f r a c tu r e  front  brought  about by separa t ion  c r ack s ,  
which f r a c t u r e s  the m a t e r i a l  by rad ia l  c r acks ,  p roceeds  ahead,  and behind it comes  the crushing  front ,  
which c rushes  the m a t e r i a l  into sma l l  blocks.  Radiation of e las t ic  waves into the unfrac tured  ma te r i a l  will 
continue, and the f r a c t u r e  f ronts  will become  exhausted with t ime ,  i .e . ,  the i r  ve loc i t ies  will vanish.  The  
radia t ion of e las t ic  waves in the vicini ty of the b las t  cavi ty  will continue until equi l ibr ium occurs  there .  

The  unknown functions f (~) , f l (~) ,  f2(~), c(T), el(T) in expres s ions  (1.1), (1.2), and (1.10), the laws of 
propagat ion of the f r a c t u r e  f ronts ,  and the law of expansion of the cavi ty  a re  de te rmined  f r o m  the boundary 
condit ions.  We will der ive  below the final s y s t e m s  of equations for  individual s u c c e s s i v e  s t ages  of f r a c -  
tu re .  

F i r s t  Stage. A supersonic  crushing  shock f ront  p ropaga tes  through the  undis turbed medium.  Here  
the unknown functions a r e  the law of expansion of the cavi ty  r = r3(t), law of propagat ion of the crushing 
f ront  r = r2(t),  and c(r and c~(~). These  functions a r e  de te rmined  f r o m  the boundary conditions 

r3" = V It=r,, zr It=r, = - -  PO (rs / ro) -3v (3.2) 

k - - I  r �9 

Changing  in (3.2) to  d i m e n s i o n l e s s  c o o r d i n a t e s  x, �9 and t ak ing  into  accoun t  the  e x p r e s s i o n s  f o r  a r  

and V f r o m  (1.10), we obtain a s y s t e m  of o rd ina ry  d i f ferent ia l  equations 

k 
x~ ~ (~) z~" (~) = c (~), z~ ~ (~) z~" (~) = ~ c (~) 

t__ Z----~c'(~) + c ~ ( T ) x 3 - 8 ( ' r ) - ~ - C t ( ~ : ) X ~ - z ( ~ : ) = p . ~ - 3 " ' l ( T ) -  X3(~) (3.3) 

k 

with initial  conditions 

k--i 
~.  (0) = x ,  (0) = i ,  c (0) = ( - - ~  (p0 - ph)) '~' (3.4) 

The init ial  ve loc i t i es  of the expansion of the cavi ty  and of the crushing  f ront  a r e  de te rmined  r e s p e c -  

t ively  by the fo rmulas  
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The solution of s y s t e m  (3.3) is valid in r e g i o n x  2" (~) -> 1. At instant  ~ = ~ ,  where  the veloci ty  of the 
crushing front  becomes  equal to the propagat ion veloci ty  of shock waves in the unf rac tured  med ium c 0, the 
second stage begins,  and the solution mus t  be continued with considera t ion  of the radia t ion of e las t ic  waves.  

Second Stage. An e las t ic  wave, which is the crushing  front,  p ropaga tes  through the unfrac tured  m a t e -  
r i a l .  Here  the unknown functions a r e  x3(r) ,  x2(~), c (v ) ,  cl(~) ,  f ( ~ ) .  These  functions a r e  found f r o m  the 
following boundary conditions: 

~" = V 1~=~. ~ ! ~ ,  = - P~ (r~ / ~o)-~, V~ - V~ = (f)~ - m)  m -~ r~" 
z ~  - -  ~ r ~  = e~r~" (V~ - -  V~), r + or162 = - -  z** ( 3 . 6 )  

The indices  1 and 2 denote quant i t ies  ahead of and behind the f r a c t u r e  front ,  r e spec t ive ly .  We sub-  
s t i tute  the expres s ions  of ~ r '  ~r0' and V f r o m  (1ol) and (1.10) into (3.6) in d imens ion less  coord ina tes  x, ~- 
with cons idera t ion  of (1.9) and fo rm u l a  

As a r e su l t  we obtain the following s y s t e m  of d i f ferent ia l  equations for  de te rmin ing  the five unknown 
functions 

k ~ B 
c" (~) + c~ (~) z ~  ~ (~) + c~ (~) x~o-f  (~) = _ p0x~-3~-i (v) - ~ z3 (~) 

z~ ~ (~) z ;  ( ~ ) = c ( ~ )  

f (~) = _ ~ L  [(k - ~) z~ (~) - f "  ( ~ ) t  

k ~ ~ c B k c" (~) + ~ c (~) x -~ (~) ~ ~ ( ~ ) z ~  ~-' (4) + ~ ~ (~) + f" ( ~ )  
t - -  Za 

i - -  z ( i  - -  ct) ~.. / ,  x . ( l  - -  2z)  (2 - -  a)  [ ' ] ' ( ~ )  1 ( ~ )  ] 

= - -  [Z** ~- ( l  + a) p~] z~ (~), ~ �9 - x~ (% Y** 0"* 
pc0" 

If  t h e  c o n d i t i o n  

(3 .8 )  

(3.9) 

is fulfi l led, the init ial  data  for  s y s t e m  (3.8) a r e  taken f r o m  the solution of s y s t e m  (3.3) at point ~- = 1"i, x 
x2('r). If  condition (3.9) is  not fulfilled, i .e. ,  the second s tage  occu r s  immedia te ly  at the initial  ins tant  (the 
c rush ing  f ront  will be subsonic),  the initial  condition will be 

! (-i) = r (-i) = o, z~ (o) = x~ (o) = i 

The solution of s y s t e m  (3.8) is cons t ruc ted  e i ther  before  the instant  when the hoop s t r e s s e s  on the 
outer  s ide  of the crushing  f ront  becom e  c r i t i ca l ,  o r  before  the instant  when the crushing  front  is  exhausted.  

If at f i r s t  the second of these  poss ib i l i t i es  is rea l ized ,  then s ince  the backward  movemen t  of the 
crushing  f ront  is  imposs ib le ,  this  f ront  mus t  h e r e a f t e r  be  rep laced  by a contact  discontinuity.  In this ca se  
we mus t  e l imina te  the fifth equation ( f rac ture  condition) f r o m  s y s t e m  (3.8) and r e p l a c e  it by the equation 

x~ (4) = const (3.11) 

The  solution thus obtained will desc r ibe  the propagat ion of e las t ic  waves in the unf rac tured  region 
and plas t ic  flow in the crushing  region in the absence  of new f r a c t u r e s  of the medium.  This  solution mus t  
be continued until the instant  when a zone of rad ia l  c r acks  occurs  at the contact  discontinuity on the side of 
the unf rae tured  m a t e r i a l .  Such continuation of the solution for  rocks  is improbable ,  s ince  for  them (r. << 
a**~ It  can occu r  in m a t e r i a l s  for  which ~ .  and a** a re  c o m m e n s u r a b l e  (for example ,  P lex ig las  [7]). We 
will cons ider  the f i r s t  case ,  when the zone of r ad ia l  c r a c k s  occu r s  for  x2"0-)> 0. The co r respond ing  in-, 
s tant  ~2 is de t e rmined  f r o m  the equation 

z _ i - - 2 ~ [  FG,) § / (~,) ] - -  (p~ ~ Z,)x~ (~) (3.12) 
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T h e  t h i r d  s t a g e  a r i s e s  at  t h i s  i n s t an t .  

T h i r d  S tage .  An e l a s t i c  wave  s e p a r a t e d  f r o m  the  zone of r a d i a l  c r a c k s  by f r o n t  x = xl(~) p r o p a g a t e s  
t h r o u g h  the  u n f r a c t u r e d  m a t e r i a l :  beh ind  the  zone of  r a d i a l  c r a c k s  is  the  c r u s h i n g  zone,  t h e  b o u n d a r y  b e -  
tween  t h e m  be ing  the  c r u s h i n g  f ron t  x = x2(~)~ H e r e  x3(~) , x~(r xl(~),  c l(~) ,  f ( ~ ) ,  f l (~) ,  f207) a r e  the  unknown 
func t ions  w h i c h  should  be  found f r o m  the  fo l lowing  b o u n d a r y  c o n d i t i o n s :  

cond i t ion  on the  c a v i t y  

ra" = V[ . . . . .  4~ = - .  P~ (r31 ro) -3~' (3.13) 

cond i t ion  on the  c r u s h i n g  f ron t  

V3 _ V1 = p~-- pl re', ~r3 - -  ~rl = Plr3" (Vi - -  Ve), 4rl = 4** (3.14) 
ps 

cond i t ion  on the  f r o n t  of  f r a c t u r e  by r a d i a l  c r a c k s  

u l = u e ,  4 r e - - 4 r l = p r l " ( V 1 - - V e ) ,  401=4.  (3.15) 

W r i t i n g  (3 .13)- (3 .15)  in d i m e n s i o n l e s s  c o o r d i n a t e s  x, r and s u b s t i t u t i n g  the  c o r r e s p o n d i n g  e x p r e s s i o n s  
f r o m  Eqso (1.1), (1.2), and (1.10), we obta in  the  fo l lowing  func t iona l  d i f f e r e n t i a l  equa t ions  f o r  d e t e r m i n i n g  the  
unknown func t i ons :  

k c" (~) + k c 3 (~) xe -~ (~) + c~ (~) Z~3a-~ (~) + ~ Z~ (~) = - -  poX~ -~'-~ (~) 

X s ~ ( ' O X a ' ( ' q = c ( ' q ,  C (~) - -  ~Xe (~) [f~" (~3) § f3" (~3)] 

= ~ {(k - ~) xe ~ (~) - IA" (~e) - / 3 "  (~ )1  ~3 (~) - f~ (~3) 

3 (1 --  ~) PhX33 (.~) t - / . .  (q3) - -  t + 

k 
I - -  2a  " - -  

<=~ 

x~ (~) 
/~ (~,) -.p- Is (,rl~) ] 2 (I -- 2~) If" (~,) / (~i)" i 

x ~ ~ if1" (h)  - ~:,~" (~11) + ) H 5  a " / ' "  (~)  ~ - ~ L ~  + Xl 2 ('~)) 

s <' (bi)'i, 
= z~" (~) {~ li1" (~)  + I~" (~)1 - / ' "  (b~) - p~xl (~) ~-77ff j 

l - 2~ ~/ (~,) 1 (5) ] 
z' /'" (~1) - -  ~ Lz-77- ~ -~- z~ (~) ~ = - -~ (Z .  + p. )  x~ (~) 

w h e r e  

~1 ----- "f - -  Z l  (T ) ,  ~1 = ~ T  - -  X 1 (X),  ~ ----- ~'~ - -  X e (T) 

~1 ---= X~ -P Xl (~), ~2 = ~'~ § x2 0:) ( 3 . 1 7 )  

E q u a t i o n s  (3.16) d e s c r i b i n g f r a c t u r e s  and p r o p a g a t i o n  of  b l a s t  waves  at  the  t h i r d  s t a g e  a r e  i n t e g r a t e d  
up to the  i n s t a n t  when the  v e l o c i t y  of one of the  f r a c t u r e  f r o n t s  v a n i s h e s  (x 1 " = 0 o r  x 2" = 0), and the  four th  
s t a g e  b e g i n s .  I t  i s  m o r e  p r o b a b l e  t ha t  the  c r u s h i n g  f ron t  i s  e x h a u s t e d  f i r s t .  

F o u r t h  S tage .  An e l a s t i c  wave  p r o p a g a t e s  t h r o u g h  the  u n f r a c t u r e d  m a t e r i a l  and beh ind  i t  the  wave  
of  r a d i a l  c r a c k s ,  the  b o u n d a r y  b e t w e e n  the  c r u s h i n g  zone  and the  r a d i a l  c r a c k  zone  be ing  a c o n t a c t  d i s c o n -  
t i nu i ty .  P l a s t i c  f low con t inues  and new c r u s h i n g  of  t he  m e d i u m  does  not  o c c u r .  

A f t e r  i n s t a n t  T = T3(X 2' (~-3~ =0) t h e r e  can be  b a c k w a r d  m o v e m e n t  of the  f ron t  x = X2(T), and the  fif th 

equa t ion  of s y s t e m  (3.16} musk be  r e p l a c e d  by  Eq~ (3.11). 

The  equa t ions  of the  fou r th  s t a g e  a r e  i n t e g r a t e d  up to  i n s t a n t  �9 = T 4, when the  f ron t  of f r a c t u r e  by 

s e p a r a t i o n  (xl"{T4) = 0) i s  e x h a u s t e d  and the  f i f th  s t a g e  b e g i n s .  
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Fifth Stage. An elastic wave propagates through the unfractured mater ia l ,  the front of f rac tu re  by 
radiai  c racks  has also stopped, the boundaries between the three  zones are  contact  discontinuities,  plastic 
flow continues, and no new f rac tu res  of the medium occur .  

The sys tem of equations of this stage is obtained f rom the sys tem of equations of the fourth stage, if 
the eighth equation (condition of f rac tu re  by separat ion)  is replaced by the equation 

xz (~) : c o n s t  ( 3 . 1 8 )  

If the hoop s t r e s s  on the side of the unfractured mater ia l ,  dropping to value or,, approaches its posi-  
tive asymptotic  value, the solution of the fifth stage can be continued to • = ~o, and if at instant T =m 5 it 
vanishes and changes sign, the sixth stage occurs  and the solution must  be continued differently. 

Sixth Stage. Everything occurs  as in the fifth stage, only the front of f r ac tu re  by radial  c racks  per -  
fo rms  backward movement  into the f rac tured  zones, closing the cracks .  

The sys tem of equations in this stage is obtained f rom the sys tem of equations of the fourth s tage if 
we equate the left-hand side of the seventh equation of sys tem (3.16) to zero  and set there  E ,  = 0. The 
solution can be continued to ~- = ~ if new f rac tu res  of the medium do not occur .  If they do occur ,  i.e., at 
instant 7 = ~s the boundary x = xl(l-) extends to the true boundary of f rac ture ,  it is n e c e s s a r y  to integrate  
the equations of the fourth stage,  then the fifth, etc. 

Thus, sy s t ems  of equations are  obtained for  all s tages.  The sequence of cer ta in  s tages  can vary ,  
depending on the proper t ies  of the rock,  initial p r e s s u r e  in the rock,  and proper t ies  of the explosive. 

Generally speaking, the descr ibed problem can be solved only numer ica l ly  with the use of a digital 
computer .  For  the f i rs t  and second stages we have a sys t em of ordinary  differential equations (3.3), (3.8) 
for which the Cauchy problem is set up. For  the third, fourth, and sixth stages we have a sys t em of func- 
tional differential equations. By means of the methods descr ibed above these sys tems  are reduced to a 
sequence of Cauchy problems for  certain sys tems  of ord inary  differential equations. For  the fifth stage a 
sys tem of differential equations with a divergent argument  is obtained, the solution of which is const ructed 
analogously. 

To continue the solution at the third stage, it is n e c e s s a r y  to have the asymptotic solution of sys t em 
(3.16) near  point T = T2, X = X2(T 2)" Here the asymptotic  solution does not have a singulari ty,  and the un- 
known functions are  expanded in Taylor  se r ies .  In construct ing the asymptotic solution, it is n e c e s s a r y  to 
determine the values of the der ivat ives  of the unknown functions at point T = 1-2, x = x2(T 2) to the second o r -  
der.  There  is no need to determine the derivat ives  of higher o rders ,  since the required accuracy  in the 
numer ica l  solution can be obtained by selecting a sufficiently small  initial region. The asymptotic formulas  
are  not given here  owing to the i r  cumbersome  size. 

A p rog ram was compiled for the "Stre la-4  ~ computer  which allows calculating the solution of the 
problem f rom beginning to end at one stroke,  i.e., during the course  of the calculat ions the p rog ram 

. . . . .  _ / 

/ t  / /  

o 
f z 

Fig. 8 

i ' , ' ~ : 1 o  ~ '  - top ,  . . . . . . . .  , -  _ ~  

~ ~ gO 20 

Fig. 9 
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determines  the next stage ar is ing and integrates  the sys tem of equations corresponding to it, calculates 

the asymptot ic  solutions at the s ta r t  of the appearance of the third stage, el iminates indeterminates aris ing 
in sys t ems  (3.3) and (3.8) for  the initial instant of the blast,  etc. The calculation stops when the unknown 
functions at the fifth o r  sixth s tages cease  to change for the accuracy  adopted. 

Calculations for  cer tain var ian ts  of an explosion in sandstone were per formed by means of this p ro -  
g ram.  The solution of the problem of a blast  in Plexiglas with the use of the data of [7] (see [5]) was 
also calculated. The resul t s  of the calculations are  in good agreement  with the experimental  data [7]. 

Figure 8 shows the calculated pattern of the propagation of f r ac tu re  and expansion fronts in plane xl- 
for  sandstone for the following initial data [3]: 

P~= 5.103arm, Ph = 10 arm _ E = i05kg/cm 2 
0.08, ~. = 30 kg/cm z ~** = 500kg/crn 2 

k = t.3, a = 0.4, b = i0kg/cmg, a = 2 

The f i r s t  and sixth s tages a re  absent in this case .  

Figure  9a shows the t ime dependence of the mass  velocity at var ious dis tances f rom the blast  center  
and Fig. 9b shows the graph of the change of the hoop (dashed line) and radial  (solid line) s t r e s s e s  at dis-  
tance x = 100 for the same  initial conditions. 

As we see f rom Fig. 9a, at all d is tances  the mass  velocity as a function of t ime has two maxima:  the 
f i r s t  co r responds  to the appearance of the front of f r ac tu re  by radial  c r acks  and the second to its exhaus- 
tion. The dashed lines show the laws of decay of the mass  velocity maxima.  Sections 1-1 and 2-2 in Fig. 
9b denote respect ive ly  the instants of a r r iva l  of the elast ic  waves radiated at the instants of occu r r ences  of 
the fronts  of f r ac tu re  by radial  c r acks  and of exhaustion of this front. 

A compar ison of the solution constructed with the solution of the elastic problem shows here,  just  as 
for the case  of nonporous rocks  and Plexiglas,  that  the elast ic wave radiated f rom the blas t  center  dies out 
more  intensely (for the elast ic solution max F~r Fx = 100 = 50 atm and in Fig. 9b max I~r r Ix = 100 ~ 10 atm) 
and has a duration g r ea t e r  by an o rde r  than in the elast ic solution~ 

Thus the conclusion made in [5] concerning the cha rac te r  of the effects of f r ac tu re  and plastic flow in 
a small  region (x ~ 3-6) of the blast  center  on the pa rame te r s  of the elast ic wave radiated at la rge  distances 
are  completely applicable also in the case  under considerat ion.  

The author thanks S. S~ Grigoryan for constant  attention to this study. 
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