CALCULATION OF THE BLAST EFFECT IN BRITTLE ROCK

(FRACT URING BY CRUSHING, FORMATION OF
CLEAVAGE CRACKS, AND SEPARATION)

A. B. Bagdasaryan

An algorithm is presented for calculating the dynamics of the development of a blast in
solid, britile fracturing rocks. The stages of the phenomenon arising and alternating in
various sequences depending on the mechanical properties of the rock and power of the
blast are examined in detail.

1. Let there be a spherical cavity of radius vy in a space filled with isotropic brittle rock. The me-
dium is at rest and compressed by hydrostatic pressure Ph. The cavity is filled with an explosive charge
which, after detonation, is converted to gas with initial pressure P;. It is required to determine the charac-
ter of fracture, volume of fractured rock, parameters of the waves radiated by the seat of the blast, ete, as
a function of the properties of the rock, explosive, and initial hydrostatic pressure.

The general approach to the solution of such problems is given in [1]. One of the properties of non-
‘porous brittle solid rocks is that on reaching the strength condition fracture can be of two types: fracture
with the formation of numerous separation cracks oriented normal to the fracture front and fracture with
the formation of numerous cleavage cracks dividing the rocks into small blocks., In porous rocks fracture

can occur with all-around compression owing to fracture of the brittle porous skeleton.

We will consider regions of rock involved in movement; we will assume at first that the material is
unfractured and then is in a fractured state after the effect of various fracturing mechanismas.

Unfractured Region. It is considered that the unfractured material is described by a linear elastic
model. The solution of the fundamental equations for this region in the case of central symmetry is given
by the equations [1]
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Here x, 7 are dimensionless coordinates, ¢q is the velocity of the longitudinal elastic waves in the
unfractured region, t is time, r is a Lagrangian coordinate, p is the initial density of the medium, Ops Ogs
o, are stresses on the coordinate areas, V is the velocity of particles in a radial direction, u is radial
displacement, ¢ is Poisson’s ratio.

Region of Fracture by Separation. It is considered that the material is divided into elastic conical
bars which withstand only radial stress, and the hoop stress is equal to zero in the entire region [1]. In
this case
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Here ¢, is the velocity of elastic waves in material fractured by radial cracks, E is Young's modulus,

Region of Fracture by Cleavage. It is considered that the material is divided by cleavage cracks and
described by Hooke's law for dilitational strain
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and by the condition of plasticity
S, — Cp = -—2'5*1 (1°4)

Here ¢, is the velocity of sound in material fractured by cleavage cracks; 74 characterizes friction
on the surface of the cleavage cracks. The solution is given by the formulas
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Region of Fracture by Crushing. It is considered that the crushed material in plastic flow is de-
scribed by equations of a continuous meaium, by the equation of motion
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by the equation of continuity, which with consideration of the condition of incompressibility of the medium
adopted here allows a general solution of the form

V=c@®lr (.7)
where c(t) is an arbitrary function, and by the condition of plasticity which is adopted by analogy with the
case of soft ground [ 2] in the form

oy = as, -+ b (1.8)
Here px is the density of the crushed material. Henceforth we will assume for simplification of the

mathematical procedure* that upon crushing the material acquires maximum density, determined by the
formula

Py = kp, k = const 1.9)

In Egs. (1.8) and (1.9) @ and b are parameters dependent on the medium and on the hydrostatic pres-
sure (Py), and k is the coefficient of maximum compaction [3].

*We note that consideration of the variability of compaction of the material at the front of the shock wave
does not cause fundamental difficulties, but the equations and formulas of the final mathematical problem
become cumbersome [2].
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Changing to dimensionless variables x, 7 in Egs. (1.6) and (1.7) and using (1.8} and (1.9), we obtain
the expressions for stresses and mass velocities
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where ¢,(r) is a new arbitrary function.

The unknown functions figuring in expressions (1.1), (1.2), (1.5), and {1.10) should be found from bound-
ary conditions which will be formulated for each of the stages of sequential development of the phenomenon,
separately for porous and nonporous solid rocks.

2. We will consider the case where the strength and pressure in the cavity are sufficiently great and
the rock is nonporous, i.e,, where fracture occurs by the formation of cleavage and separation cracks.

This problem for the case where fracture occurs only by separation is solved in [4].

The initial data for which fracture occurs by cleavage can be determined from the solution of the
problem for a linearly elastic model with consideration of the condition of fracture [1]

Gy~ Gg == — 2T, (2.1}
attained in the cavity at instant 7 = 7;, These data should satisfy the condition [4]

Py 227, — o, (2.2)
where T x 1s the critical value of tangential stresses, o « is the critical value of tensile stresses.

The propagation of the blast waves on fulfilling condition (2.2} occurs in the following stages in the
general case,

1, An elastic wave is radiated from the surface of the cavity during time 0 < 1 = 1,

2. The spherical front of cleavage fracture x =x,{(r) radiating elastic wavesbegins to penetrate into
the medium from the surface of the cavity at instant 7 =7: fracture continues until instant v =7,, when
the condition of fracture by separation

G == Oy (2.3)
is attained on the fracture surface X =X,(7) on the side of the unfractured region.

3. The fracture front bifurcates at instant 7 =7,. An elastic wave propagates along the unfractured
medium, behind it is the front of fracture by radial cracks (x =x(r)), and behind that is the crushing front
(x = x,(7))

4. At instants T =7, and 7 = 7, the velocity of fronts x =x,(r) and x = x,(r) vanish and fracture stops.
The radiation of elastic waves continues until equilibrium is established around the cavity. The equations
of the final mathematical problems occurring for the indicsted stages of fracture are given below.

The solution of the problem at the first stage is described by formula (1.1), and function f(£) is de-
termined by the formula
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Instant 7, is determined from condition (2.1) if we substitute into it the values of 0y and oy in the
cavity, using (1.1) and (2.4). The second stage is described by Eqgs. (1.1} and (1.5), and the unknown func-
tions f(£), F (&), F,(n) are determined from the boundary conditions, which consist of the condition on the
cavity and the condition of conjugation at the fracture front, the law of motion of which,x = %,(7), iz also to
be determined.

The condition on the cavity is obtained from the assumption of an adiabatic quasisteady-state change
of the pressure of the blast products upon a change of volume of the cavity [1].
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The conditions of conjugation at the front x = x,(7) consist of the fracture condition (2.1), which is -
fulfilled on the outer side of the front, and of the relationships on the surface of a strong discontinuity.

Taking all this into account, we obtain the equations describing the propagation of blast waves and
fracture of the rock in the second stage in the form
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Here we ought to supply the quantities ¢, £, 1 with indices in order to distinguish them in Eqgs. 1.1),
{1.2), and (1.5), but for convenience we will not use indices.

The adiabatic exponent of the blast products vy is taken to be equal to 3 for high pressures and to 1.25
for moderate and low pressures,

The positiveness of a certain expression A, which in the case in question amounts to the inequality

A= qu*l{ F1 () j Fim(m) | 3[ 1 (§) = Fio ), _Fi ) ;1; Fo (m) 1} S0 (2.8)

is the condition establishing that shear is everywhere plastic behind the front.

In setting up the solution we must watch the sign of A, and from the point where for the first time
A = 0 we must construct the rarefaction wave behind which shear will be elastic.

We will consider the case where condition (2.6) is fulfilled. From the solution for the first stage we
can obtain the condition for the initial data

Py Py + 225w, 2.7)

on fulfillment of which the second stage occurs immediately at the initial instant (first stage is absent) and
if not fulfilled the first stage occurs.

System of differential equations (2.5) is integrated to instant 7 = 7, during which the condition of
fracture by separation (2.8) is attained at the front x = xy(7) on the side of the unfractured material.

The third stage is described by Egs. (1.1), (1.2), and (1.5), where the unknown functions f (&), f{(£),
Falm)y FylEy), F,(n;) are determined from the boundary conditions, which are formed on the cavity and at the
fracture fronts, the laws of motion x =x;(7) and x = %,(7) also being subject to determination.

With consideration of (1.1), (1.2), and (1.5) and the indicated boundary conditions, we obtain the fol-
lowing system of functional differential equations for determiningthe unknown functions of the third stage:
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The fourth stage arises if on integrating systems (2.5) and
{2.8) the velocity of one of the fronts vanishes at some instant (r =
T4). After this instant the fracture condition on the corresponding
front [first equation of system (2.5) or second and fifth equations
of system {(2.8)] must be replaced by an equation corresponding
to the condition of stopping of the front

Fig. 1

(1) = const or =z, (1) = const (2.9)

Upon exhaustion of the front x = x,(7) its backward motion is impossible, i.e., X, *{T) = 0, and upon
exhaustion of front x = x,(7) the condition X; (7)= 0 must be preserved up to 7 = «, if 04 at the front x =
%;{7) on the side of the unfractured region stays within 0 < Og< Oy

If at instant T =7, stress o, vanishes, the front x = x,(7) will begin to move into the region of frac-
ture by radial cracks, closing the cracks. From instant 7, the solution is described by system (2.8), if
in it the right-hand side of the seventh equation is equated to zero and we set Z_ =0,

If the front x = x,(7), performing oscillations, extends to the true boundary between the fractured and
unfractured regions, the solution must be continued with consideration of fracture (third stage). In the case
where A in Eq. (2.6) vanishes at point (x, 7}, the solution must be continued with considerations of elastic
unloading. The equations for this case are easily obtained from considerations presented in {1]. As spe-
cific calculations showed, in all the calculated variants of this problem condition (2.8) is satisfied, and
therefore the equations describing elastic unloading will not be presented here.

Let us proceed to a description of the numerical method of solving the problem described above, As
was already noted, if condition (2.7} is not satisfied, the solution must be set up by Egs. (1.1) and (2.4): and
if condition (2.7) is satisfied, it must be set up by means of Eqgs. (2.5) from the initial instant. In the inter-
val T{ = T = T, the solution of system (2.5} is constructed in the same manner as described in [1, 4], i.e.,
the asymptotic solution of system (2.5) near the point (r = 7|, x =1) is constructed, system (2.5) is divided
into two parts (the first three equations are the first part and the fourth equation is the second part), the
Cauchy problem is set up for each of these parts, and then the equations are integrated sequentially. In the
first part F,(£) is the known function from the preceding solution (or from the asymptotic solution) and in
the second it is the function F,(y).

The solution of system (2.5) is calculated up to instant T = 7,, after which it is necessary to construct
the solution of system (2.8). On changing at instant 7 = 7, to the construction of the solution of system (2.8)
it is necessary to have the asymptotic solution of system (2.8) near the point 7 = 7,, X=X, (7). We will explain
the procedure of continuing the solution by means of a graphic diagram (Fig. 1). In accordance with the
scheme described in [1, 4], let the solution be constructed in the region 0 < 7 < Ty» and by asymptotic for-
mulas be constructed in the small region abcde, where be and bd are the initial segments of the curves x =
%,(7) and x,(7), and ae is a sufficiently small interval. From point d we draw the characteristic £ =A7 —x =
ATq—X{74). It intersects curve x =x,(r) at some point £, From this point we draw the characteristic ¢ =
ToX=Tp xl(Tf). Since the solution is known in region abede, £,(£) will be known in the interval [Ecs £f}.

In the fifth, sixth, and seventh equations of system (2.8), assuming £,(¢) is known, we obtain an indi-
vidual system for determining the three fumctions £(£), fo(n), and x,(7). Regarding the latter as functions
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of { =7 —x,(7) and changing in these equations from differentiation with respect to £, 7, 7 to differentiation
with respect to the variable ¢, we reduce the fifth, sixth, and seventh equations of system (2.8) to an indi-
vidual system of ordinary differential equations for which the Cauchy problem was set up.

The initial data are determined from the asymptotic solution at point ¢. Solving this problem numer-
ically, we find the segment of the curve of the line x = x,(7), function f(¢) in the interval [, £ ], and f,(n)
in this case will be known in the interval [ng, nr]. We draw through point e the characteristic’ {, = qr ~x =
qTe—1; it intersects line x = x, () at point g. ’{;7e then draw the characteristicn = AT —x = )\,’Tg"'X1 (Tg) from
point g; it intersects line x = x, {7) at point h. On segment dg of line x = x,(7) the function f,(n) is known
from the solution of the first system; function F,(£;) will also be known there, since it is known on segment
ie [from the asymptotic solution and from the solution of system (2.5}].

From the second, third, and fourth equations of system (2.8) we obtain the second system of equations
for determining F,(1,), f;(¢,), and x,(r). Regarding them as functions of 7 and changing from differentiation
with respect to £y, £y, 1y, 7, to differentiation with respect to 7, we reduce these equations to Cauchy's
problem for systems ofordinary differential equations with initial data at point d. Solving this (second) sys-
tem numerically, we find segment dg of line x = x,(7) and functions F,{{,) and Fy(n,) respectively in inter-
vals {gid’ §1g} and [’fhd, Tﬁg]e

We now draw from point g the characteristic ny, =q7 +x = QTg + Xy(7 ); it intersects line x =1 at
point j. In the interval [n,,;] (on segment aj) function F, is known from %he initial asymptote and from
the solution of the second syseem. With consideration of this the first equation of system (2.8) on changing
to the variable 1°=q7 + 1 is reduced to an ordinary differential equation for determing F,(£,), for which
the Cauchy problem with initial data at point e was also set up.

Solving this problem, we determine function F; in the interval [£;,, £45]. Now we draw from pointf
the characteristic = AT +X = AT, + X,(r,); it intersects line x = x,(7) at point k. From point k we draw
the characteristic &, =q7 — X =q7} — X7} ); it intersects line x =1 at point .. The second system is again
solved for interval gk, with f,{n;) being known in the interval [n,, ] and F, (&,) in interval [£_, tjk] from the
preceding solutions, and Cauchy's data are taken for point g. 'I%xe first cycle ends on this, e solution
is continued further in an analogous order, i.e., drawing through point k the characteristic n = const, which
intersects line X =x,(r) at point m, we determine the region where the first system must be integrated.
Then the second system is integrated on segment kn of curve x = x,(r), after which the equation for F,(£y),
etc. The construction of the solution for late instants is done according to the given scheme, only in Eqgs.
(2.8) it is necessary to take into account those changes which are described for the fourth stage.

We will proceed to the construction of the asymptotic solutions near instants 7; and 7,. In solving
this problem it is necessary to have the asymptotic solution of system (2.5) near point 7 =0, x =1 if condi-
tion (2.7) is fulfilled and near point 7 =7, x =1 if condition (2.7) is not fulfilled. It is necessary to have
also the asymptotic solution of system (2.8) near point T = Ty, X = Xy(7,).

In the case where condition {2.7) is fulfilled, the solution of system (2,5) near point 7 =0, x =1 is
expanded in a Taylor series, i.e., construction of the asymptotic solution amounts to determination of the
values of the unknown functions and their derivatives at point (0, 1). From the initial condition in this case
u(x, 0) =0 we have

. " 2(1 —
fo=1v =0, fo=-2227r, (2.10)

i.e., at the initial instant the stresses and mass velocities in the unfractured region depend only on the
parameters of the medium. Here and henceforth the indices 0 are the values of the functions and their
derivatives at points corresponding to the start of fracture (points (0, 1), (74, 1), (15, X,(T,))).

From system (2.5) we obtain for the initial velocity of the front

. (4 — 20y (14} 2(1—6) Ty —po—py Ekd
Eagy = [ [ 2d+ 0T, + (1 —25) (472 — 3po —-3ph) J (2.11)

Hence follows in particular that X,y* —q as py — pp — =, i.e., the propagation velocity of the frac-
ture front is limited, which also follows from the condition of thermodynamic correctness of the problem
obtained in {1].
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For constructing the asymptotic solution we do not need all values of the functions and their deriva-
tives but only the following combinations figuring in Egs. (1.5):

Fy—Fy +F +Fy, FOHF), Fy—F+F+ Fy (2,12)
By virtue of the existing arbitrary rule we assume
Fro= Fpp = Fyy = Fyg =0 (2.13)
From system (2.5) we easgily find for point 7 =0, x =1
Fio= g — (—ray
Fo = —«1.5’rq2p0a1—(—~1)"—f-2—°2:3_3—x—:—[;?— (n=1,2 210
S |
. {4 — 26) [4% (as — 2asze0’) — 2220}
v = AT, — ¢ — 20 ] (& — 70 — 2gas (L — 20) 7o’
Here
a4y = 21?{ 21(1_—-22) T, — [2 (11:216) — Py — P ]‘/:I:é gi;ccs) T, 11,1.:56) (Po-— Pr) - 11 - ) ]‘/2}
ay = B tayzay — (g — 2 Fao” + (@ + 200 Fao” + ZEZI T (g (17 — )
gy = 7}5* (po—pp) — 2452 T, 4(:;;) I, (2.15)

ap = (1 -‘v"?zo)(fo + T4 + 3Ypoqay -+ 47T y1z30 — g — Zog {(1 ~— Zg0) (fo™"
+ 7)) — “g“ Poeo — 9 [{§ — %20} Fyo™ + (g -+ 2207) Fay'] }

There is no need to determine higher order derivatives, since the problem must be solved numerical-
ly, and the required accuracy can be attained by selecting a sufficiently small initial segment.

In the case where condition (2.7) is not fulfilled, the asymptotic solution of system (2.5) near point
(4, 1) contains a singularity and is constructed as in [4]. From the solution of the first stage £, and fy"

are known.
With consideration of this and the arbitrary rule (2.12), from system (2,5) we can easily determine

Jo s foo s Fugy Fyg®y Fyge Fyy” for point (7, 1), and relationx,y" = 0 follows from the continuity of ¢,, on char-
acterlstlc £=171y~1 and from the condition of continuity of impulse, since [du/dr] = 0.

Functionsx,"" (1), Fy* (£}, Fy' (), and f (IV)(L’) have singularities of order
e T e - BT P U I LR LA Y (S S (2.16)

With consideration of the aforesaid, we obtain the asymptotic solution of system (2.5) near point T =T,
x =1 in the form
zp (1) =14+ B (‘:—1:1)/’+
AE) = by + by (T 1) — Beby (1 — 1) 4 0.5by9 (v — ) -+ ¢ (0.534%5,
— bobs) {r — )7 — 0.5B, (2.83¢%, — by, — by) (t — 1, + ...
Py (M) = byg (v — 1) + by [By — 0.8gb5 (g — )] (v — 7)) — [0.5¢2 — 0.458,84(¢ (2.17)
— bl (v — %)® — ¢ [0.53¢%; — byby — 0.33¢b; (¢ — B)] (v — 1)
— [1.42bobyq% — 0.5b42b; — 0.16b; (g — by)] (v — 1,)% +
f@Y="fo+ ' (T — 1) — bofo (v — 71)’/2 + 0.5fg" (v — )% + by (0.4 + 0.6f,7)
v — )"+ (0465, + 0.556%) (v — 1,)° +

b= [ S L =1 =) — ghald 20
= @ — o) (A L0 — & —3)

1 1
by=fo+ fo', b2 iy (fo+1"), ba= pro [(po + B2y — ]
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(2.18)
The solution of system (2.8) near point T = 7,, x = X, (7)) is expanded in a Taylor series, i.e., the prob-
lem amounts to determining the values of the unknown functions and their derivatives at this point. On the
characteristics £ =7 —x = 7,—x,(Ty) and £, = g7 —X = QT,—X, (1) the displacement and stresses are continu-
ous, i.e., o, fo's fo''s Figs Fig's F1o™"s Fags Fag's Fap™*y Xqg = Xy are known from the preceding solution.
From system (2.8) we easily determine the quantities

. {1 —c
fu="fo —Q-i—;—mphxzo2v foo=0

1 g
fo = ldo— Va1 (1) (G5 Ta =12} =ty

- (2.19)
T = (%i‘)/ 20 = " T s —d;o'") p—
where
do = o= [(F1o" — F20") 220+ F1o' + Fao]
dy— Fiy" 4 Fay L ;12_0 (Frg — Fay) — [I_;F (Fio -+ Fao) +
T+ 4(11_::) T oza0 (1 + 21nzy0) — 23:‘” T,-—- —%:— — 2?_;;)-1’#2@ (2.20)

dy = @*(Fyo",+ Fao") + 22007 — disqT 41 In 250 + poao
5 . . - 21 —2 .
ds = A? (‘fm — f20 ‘.‘““fﬂ)—fo — & 6)<'f0—+—@“>—Phxzo

Z20 1—o0 Z20 z20*

The expressions of higher order derivatives can be determined easily by differentiating Eqs. (2.8)
and arranging 7 to T,.

On the "Strela-4" computer the algorithm described above was usedtocalculate the problem of the
effect of a blast in various media with initial pressures in the cavity Py =2- 10%-10° atm up to the instant
of formation of a region of radial cracks. Some auxiliary calculations were made on the "Nairi® computer.

The results of the calculations for the case where condition (2.7)

is fulfilled are shown in plane x7 in Fig., 2. The law of expansion of the
T\ \v/ P cavity X =x,(r), law of motion of the fracture front x = x,(r), and change
N T 7 _2‘% — of velocity of the front x,°(7) with time in the interval 0 = 7 < 7, are
A J-?/@ shown,
AN
N The results pertain to clay shale, solid lines (¢ = 0,26, E =1.9°
i ‘\\;/// 10° kg/em?, o, =38 kg/em?, 7, =250 kg/em?, 7,4 =100 kg/cm?); to
0 iD o X ? limestone, dot-dash lines (o = 0.25, E =7°10° kg/cm?, o, =25.5 kg /cm?,
//§ K% " T, =400 kg/em?, 7, =150 kg/cm?); to granite, dashed line (0 = 0.3,
s A/g"“ 74 4 E =2.22-10% kg/cm?, o, =45 kg/em?, 7, =750 kg/em?, T 4 =400 kg/cm?)
///K)( {3] for a blast with parameters P, =104 atm, P, =10 atm,
',j / ‘>/\ W3 Figure 3 shows similar data for the case where condition (2.7) is
/ , N \ Z: not fulfilled for a blast in granite with parameters P, = 2000 atm, P, =
- % N 300 atm (dashed lines) and P, = 2500 atm, P, =300 atm (solid lines). As
\ z in Fig. 2, the calculation was performed only for the interval 0 = 7 =
4 7 % ‘ T, except that here 7y > 0. The graph of the expansion of the cavity is
Y 25 10z, not shown in Fig. 3, since this expansion is negligibly small in the given
Fig. 2 case.

808



i
¥
< 6, 6,(kg/cm?) v
g/ | |
- - 100 — \
N | 1 1
’ ! \ | P
/\ &f:* | S N S !
N WA AA\/)'\( — [ R 0 I~T
o v 6 N~ Swr . T
> o ] Y £} )‘\: \\ 2 -
y; z I e . 4
W 8 AW A5 M0 WE A
@ 10 1
Fig. 3 Fig. 4 Fig. 5

Here, as in the case of the formation of only a region of fracture cracks [4], the relations %, (7;) =
0,%9°"(T{) = o hold true, i.e., the fracture front begins to move from the surface of the cavity with a zero
velocity and in a short time picks up maximum velocity (in this case, of course, the limitation on the veloc-
ity of the fracture front obtained from the requirements of thermodynamic correctness of the problem for-
mulated and uniqueness of its solution [1] is realized), after which x,-- < 0 — the velocity of the front de-
creases slowly.

As we see from Fig, 2 and from the results of the calculations of many other variants, with sufficient-
ly high initial pressures the velocity of the fracture front at first decreases very slowly in comparison with
late instants. After the velocity of the front begins to decrease intensely, condition (2.3) is attained at the
fracture front before the front velocity vanishes.

Figures 4 and 5 show the laws of change of stresses and mass velocities in time at distances x =100
for a blast with parameters Py =10% atm, Py =10 atm in granite, and also the corresponding data for the
solution of the problem in a purely elastic setup.

We see that the solution constructed differs considerably from the solution of the problem in a pure-
ly elastic setup, both with respect to the form of the elastic wave and to its amplitude and duration, i.e.,
despite the fact that the region of fracture by cleavage (r ~ 5r} is small in comparison with the digtance
considered (r = 100y, the effect of processes in the fractured region on the character of the elastic waves
radiated is substantiai, True, in the case in question the effects of a decrease of amplitude and increase of
duration of the elastic wave in comparison with the case of the purely elastic solution are not as great as in
the cases considered in Section 3 of this paper and in [5].

Figure 6 shows the graphs of the change of mass velocities in time at various distances from the
blast center in granite for parameters P; = 104 atm, Ph =10 atm,

Figure 7 shows the profiles of the radial and hcop (dot-dash lines) stresses in the near zone for a
blast with parameters P, =104 atm, P, =10 atm in granite for different instants noted in the figure,

The first jump of stresses correspondstothe arrival of the leading edge of the radiated elastic wave
and the second to the passage of the fracture front,

s
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S LA Y =1 B e A 14
B LN Y Y B AW A el S
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w a v 7] 17 27 25 z
Fig. 6 Fig. 7
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We note that it follows from an analysis of the results of calculations for different variants in which
T, and T, were varied that, other conditions being equal, the dimensions of the region of fractured rock in-
crease with decrease of the difference between 7, and 7. If 7,4 — 7, the velocity of the fracture front
tends to a constant value equal to ¢,. This case with consideration of the conditiono = 0 corresponds to
jointed rocks. Some exact solutions for this special case were obtained in [6].

*

3. We will consider the problem of the effect of a blast in porous brittle rocks, The porous material

is fractured when the stresses exceed the critical values of the tensile (0*), compressive {o " *), and shear
(r, = 0.50,,) stresses and hydrostatic stress (0,,).
The fracture conditions for porous rocks can be written in the form
o = Gy Gp b UG = = Gy (3.1)

For @ = 0 we have fracture when the radial stress reaches the critical compressive stress. The con-
dition & = —1 corresponds to the case of fracture when the tangential stresses reach the critical value, For
o = 2 the material fractures when the stresses reach the critical value of hydrostatic stress.

If the initial pressure in the cavity is high, a supersonic spherical crushing shock front will pass
through the rock at the initial instant. The velocity of the crushing front will decrease with time, and at
the instant when the velocity becomesequal to the velocity of sound in the unfractured material, the front
will begin to radiate an elastic wave into the unfractured material, If tensile stresses reaching the critical
value ¢, occur in the medium not fractured by crushing, a front of fracture by separation cracks will pass
through the medium,

At this instant the fracture front bifurcates — the fracture front brought about by separation cracks,
which fractures the material by radial cracks, proceeds ahead, and behind it comes the crushing front,
which crushes the material into small blocks., Radiation of elastic waves into the unfractured material will
continue, and the fracture fronts will become exhausted with time, i.e., their velocities will vanish. The
radiation of elastic waves in the vicinity of the blast cavity will continue until equilibrium occurs there.

The unknown functions £(£), f;(£), f;(n), e(7), c4(7) in expressions (1.1), (1.2), and (1.10), the laws of
propagation of the fracture fronts, and the law of expansion of the cavity are determined from the boundary
conditions, We will derive below the final systems of equations for individual successive stages of frac-
ture.

First Stage. A supersonic crushing shock front propagates through the undisturbed medium. Here
the unknown functions are the law of expansion of the cavity r = ry(t), law of propagation of the crushing
front T =r,(t), and c{r) and ¢,{r). These functions are determined from the boundary conditions

rs = 14 [— Gr Ir=r, = — P, (7"3/ To)~%¥

k-1 . .
V‘r———r,z k‘ Ty, G;.Epgr,z' -— Ph-—er.z

(3.2)

Changing in (3.2) to dimensionless coordinates x, 7 and taking into account the expressions for o,
and V from (1.10), we obtain a system of ordinary differential equations

s (Mg (B =c(®), 2} (T)ay (1) = g e ()

250 (0 g ()27 () 6 (1) 227 () = P (1) — () 3.3)

1 f Ja ¢ (%) + T _];_ = 2 { )z 2 (%) + oy {7) 22T (t)= — (ph -+ ¥ g fa > T2 (T) — k ; 1 232 (7) 2 (%)

with initial conditions

2O =20=1  ©="3E—m" (3.4)

The initial velocities of the expansion of the cavity and of the crushing front are determined respec-
tively by the formulas

(3.5)

2z =t e—p)", =@ O= (25 o mw)]"
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The solution of system (3.3) is valid in regionX,” () = 1. At instant 7 =7, where the velocity of the
crushing front becomes equal to the propagation velocity of shock waves in the unfractured medium c, the
second stage begins, and the solution must be continued with consideration of the radiation of elastic waves,

Second Stage. An elastic wave, which is the crushing front, propagates through the unfractured mate-
rial, Here the unknown functions are x5(7), x,(7), ¢(7), ¢4(7}, f(&). These functions are found from the
following boundary conditions:

Py =Viery  Orlmr,=— Po(rs/me)™, Vo Vi={(ps—p;)pa 1y

Opg — Gp1 = Pl (Vl - V2)9 Opp F XGpt = - Cxx

(3.6)

The indices 1 and 2 denote guantities ahead of and behind the fracture front, respectively, We sub-
stitute the expressions of 0., 0y, and V from (1.1) and (1.10) into (3.6) in dimensionless coordinates x, T
with consideration of (1.9) and formula

m=p(t—5—2) (3.7)

As a result we obtain the following system of differential equations for determining the five unknown
functions

=5 0+ T 027 (0 + (D207 (1) = — Pz ¥ () — 12525 (1)

252 (v) 25 (1) =c(x)

(@) —f (@) — L8 . 2O gy 1y —1 )

73 (T}
€ (0 f‘” (D)2 (1) + ¢ (122574 (1) + 2 2 (1) + 7 (Ga) (3.8)
+ 2B TG iy (1) = — 2 () [k — D) 2(5) — £ (G)]

{1—s(l—a) 25) (2 — a)

. (— f | f(
1% .f (C2)+ 13 [3:2(':) + 352(':)]

== B+ A+ ) Pl2a (), L=T—5(1), Bu= o2

If the condition

k1
P —— + 7~ Zas (3.9)

is fulfilled, the initial data for system (3.8) are taken from the solution of system (3.3) at point 7 =7, x =
Xy{7). If condition (3.9) is not fulfilled, i.e., the second stage occurs immediately at the initial instant (the
crughing front will be subsonic), the initial condition will be

Fi=) = (=) =0, 2,(0) =2;(0) =1

, Eed  Zpe— ¥ (3.10)
¢0) = Zpe —put | (oo Ty (At — Ze )]

The solution of system (3.8) is constructed either before the instant when the hoop stresses on the
outer side of the crushing front become critical, or before the instant when the crushing front is exhausted.

If at first the second of these possibilities is realized, then since the backward movement of the
crushing front is impossible, this front must hereafter be replaced by a contact discontinuity. In this case
we must eliminate the fifth equation (fracture condition) from system (3.8) and replace it by the equation

z, (1) = const (3.11)

The solution thus obtained will describe the propagation of elastic waves in the unfractured region
and plastic flow in the crushing region in the absence of new fractures of the medium. This solution must
be continued until the instant when a zone of radial cracks occurs at the contact discontinuity on the side of
the unfractured material. Such continuation of the solution for rocks is improbable, since for them o x <
Ouy. It can occur in materials for which ¢ » and o are commensurable (for example, Plexiglas [7]). We
will consider the first case, when the zone of radial cracks cccurs for %°(T}> 0. The corresponding in-
stant 7, is determined from the equation

S ) — 1—25 [ FE) 1 I = — (pp + 2,) 73 (1) (3.12)

1 —o | z2{t9) z9® {T9)

811



“ s
Be = Ta— 23 (Tg), 2, =p7:‘2

The third stage arises at this instant.

Third Stage. An elastic wave separated from the zone of radial cracks by front x = x,(7) propagates
through the unfractured material: behind the zone of radial cracks is the crushing zone, the boundary be-
tween them being the crushing front x = x,(). Here x4(7), %,(7), x((7), ¢,(7), (&), £1(£), f,(n) are the unknown
functions which should be found from the following boundary conditions:

condition on the cavity
13 =V |reras O, = == Py (ry/ ro)=¥ (3.13)

condition on the crushing front

Vi—Vy= &;—;ﬂ ry, Gup— G = Pl (Vi—V3a), 1= 04y (3.14)

condition on the front of fracture by radial cracks
Uy = Ug, Opa Gy = o7y (V1 — V), Got = Gy (3.15)

Writing (3.13)-(3.15) in dimensionless coordinates x, T and substituting the corresponding expressions
from Eqs. (1.1), (1.2), and (1.10), we obtain the following functional differential equations for determining the
unknown functions:

T}Z ¢(r)+ g 4k— — ¢ (1) 237 (¥) + €1 (T) 2™ (1) + f — 23 (T) = — Pz~ (1)
x3% (1) 25" (T) = ¢ (%), ¢ (v) — Ahxy (7) [f1" (Ba) + fa' (Ma2)]
= Z 0 e — 1) (0) — U ) — f2' ()] 22 (0) — 1 &)

3(1—
—fa(n) — 2822 payt () |

¢ () e (M8 (@) + @55 () + (T + 125 )7 (D)

. . . " (B2) — f2 (e 3(1—o) 16
= 2y () (MUY @)+ i ()] — S Y[ LG AGI RO 2E20 ] (8.16)
7 @) — 1y (ng) + LELEROE - Be g, )
Ty . g 20 —29)7 1
W1y @) — fy () + BOLERO gy 2T ER 4 SR8

— P (9) =z () (A G + )] = £ ) — £

s Lx1(v)

where

L=1—2:(v), LE=M—2,(1), & =~W—2,(7) )
M =At 42, (1), Ny =At 42, (7). (3.17

Equations (3.16) describing fractures and propagation of blast waves at the third stage are integrated
up to the instant when the velocity of one of the fracture fronts vanishes (x;" =0 orx,” = 0), and the fourth
stage begins. It is more probable that the crushing front is exhausted first.

Fourth Stage. An elastic wave propagates through the unfractured material and behind it the wave
of radial cracks, the boundary between the crushing zone and the radial crack zone being a contact discon-
tinuity. Plastic flow continues and new crushing of the medium does not occur.

After instant 7 = 74(x," (T3} =0} there can be backward movement of the front x = x,(7), and the fifth
equation of system (3.16) must be replaced by Eq. (3.11).

The equations of the fourth stage are integrated up to instant 7 = 14, when the front of fracture by
separation (x;°(7,) = 0) is exhausted and the fifth stage begins.
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Fifth Stage. An elastic wave propagates through the unfractured material, the front of fracture by
radial cracks has also stopped, the boundaries between the three zones are contact discontinuities, plastic
flow continues, and no new fractures of the medium occur,

The system of equations of this stage is obtained from the system of equations of the fourth stage, if
the eighth equation (condition of fracture by separation) is replaced by the equation

z, (1) = const (3.18)

If the hoop stress on the side of the unfractured material, dropping to value ¢ 4« approaches its posi-
tive agymptotic value, the solution of the fifth stage can be continued to T = », and if at instant v =7; it
vanishes and changes sign, the sixth stage occurs and the solution must be continued differently.

Bixth Stage. Everything occurs as in the fifth stage, only the front of fracture by radial cracks per-
forms backward movement into the fractured zones, closing the cracks,

The system of equations in this stage is obtained from the system of equations of the fourth stage if
we equate the left-hand side of the seventh equation of system (3.16) to zero and set there Z « = 0. The
solution can be continued to T = « if new fractures of the medium do not occur. If they do occur, i.e., at
instant 7 = 74 the boundary x = x,(r) extends to the true boundary of fracture, it is necessary to integrate
the equations of the fourth stage, then the fifth, etc.

Thus, systems of equations are obtained for all stages. The sequence of certain stages can vary,
depending on the properties of the rock, initial pressure in the rock, and properties of the explosive,

Generally speaking, the described problem can be solved only numerically with the use of a digital
computer, For the first and second stages we have a system of ordinary differential equations (3.3), (3.8)
for which the Cauchy problem is set up. For the third, fourth, and sixth stages we have a system of func-
tional differential equations. By means of the methods described above these systems are reduced to a
sequence of Cauchy problems for certain systems of ordinary differential equations. For the fifth stage a
system of differential equations with a divergent argument is obtained, the solution of which is constructed
analogously.

To continue the solution at the third stage, it is necessary to have the asymptotic solution of system
(3.16) near point 7 =Ty, X = X,(r,). Here the asymptotic solution does not have a singularity, and the un-
known functions are expanded in Taylor series, In constructing the asymptotic solution, it is necessary to
determine the values of the derivatives of the unknown functions at point T = 7,, x =x,(7,) to the second or-
der. There is no need to determine the derivatives of higher orders, since the required accuracy in the
numerical solution can be obtained by selecting a sufficiently small initial region. The asymptotic formulas
are not given here owing to their cumbersome size.

A program was compiled for the "Strela-4% computer which allows calculating the solution of the
problem from beginning to end at one stroke, i.e., during the course of the calculations the program
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determines the next stage arising and integrates the system of equations corresponding to it, calculates

the asymptotic solutions at the start of the appearance of the third stage, eliminates indeterminates arising
in systems (3,3) and (3.8) for the initial instant of the blast, etc. The calculation stops when the unknown
functions at the fifth or sixth stages cease to change for the accuracy adopted.

Calculations for certain variants of an explosion in sandstone were performed by means of this pro-
gram,. The solution of the problem of a blast in Plexiglas with the use of the data of [7] (see [5|) was
also calculated. The results of the calculations are in good agreement with the experimental data [7].

Figure 8 shows the calculated pattern of the propagation of fracture and expansion fronts in plane xt
for sandstone for the following initial data [3]:

P, = 5.10% atm, Py == 10 atm E = 10°kg/cm?
¢ == 0.08, o, = 80 kg/em® 5, = 500kg/cm’
k=13, a = 0.4, b = 10kg/em?, o = 2

The first and sixth stages are absent in this case.

Figure 9a shows the time dependence of the mass velocity at various distances from the blast center
and Fig. 9b shows the graph of the change of the hoop (dashed line) and radial (solid line) stresses at dis-
tance x =100 for the same initial conditions,

As we see from Fig. 9a, at all distances the mass velocity as a function of time has two maxima: the
first corresponds to the appearance of the front of fracture by radial cracks and the second to its exhaus-
tion. The dashed lines show the laws of decay of the mass velocity maxima. Sections 1-1 and 2-2 in Fig.
9b denote respectively the instants of arrival of the elastic waves radiated at the instants of occurrences of
the fronts of fracture by radial cracks and of exhaustion of this front.

A comparison of the solution constructed with the solution of the elastic problem shows here, just as
for the case of nonporous rocks and Plexiglas, that the elastic wave radiated from the blast center dies out
more intensely (for the elastic solution max |0, |y = 1¢9 = 50 atm and in Fig. %b max |o,.|x = (¢ =~ 10 atm)
and has a duration greater by an order than in the elastic solution.

Thus the conclusion made in [5] concerning the character of the effects of fracture and plastic flow in
a small region (x ~ 3-6) of the blast center on the parameters of the elastic wave radiated at large distances
are completely applicable also in the case under consideration.

The author thanks S. S, Grigoryan for constant attention to this study.
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